Autonomous car using CNN deep learning algorithm
نویسندگان
چکیده
منابع مشابه
Image similarity using Deep CNN and Curriculum Learning
Image similarity involves fetching similar looking images given a reference image. Our solution called SimNet, is a deep siamese network which is trained on pairs of positive and negative images using a novel online pair mining strategy inspired by Curriculum learning. We also created a multi-scale CNN, where the final image embedding is a joint representation of top as well as lower layer embe...
متن کاملAutonomous Quadrotor Landing using Deep Reinforcement Learning
Landing an unmanned aerial vehicle (UAV) on a ground marker is an open problem despite the effort of the research community. Previous attempts mostly focused on the analysis of hand-crafted geometric features and the use of external sensors in order to allow the vehicle to approach the land-pad. In this article, we propose a method based on deep reinforcement learning that only requires low-res...
متن کاملMarginalized CNN: Learning Deep Invariant Representations
Training a deep neural network usually requires sufficient annotated samples. The scarcity of supervision samples in practice thus becomes the major bottleneck on performance of the network. In this work, we propose a principled method to circumvent this difficulty through marginalizing all the possible transformations over samples, termed as marginalized Convolutional Neural Network (mCNN). mC...
متن کاملDeepPicar: A Low-cost Deep Neural Network-based Autonomous Car
We present DeepPicar, a low-cost deep neural network (DNN) based autonomous car platform. DeepPicar is a small scale replication of a real self-driving car called Dave2 by NVIDIA, which drove on public roads using a deep convolutional neural network (CNN), that takes images from a front-facing camera as input and produces car steering angles as output. DeepPicar uses the exact same network arch...
متن کاملJoint Deep Learning for Car Detection
Traditional object recognition approaches apply feature extraction, part deformation handling, occlusion handling and classification sequentially while they are independent from each other. Ouyang and Wang proposed a model for jointly learning of all of the mentioned processes using one deep neural network. We utilized, and manipulated their toolbox in order to apply it in car detection scenari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1869/1/012071